Ultra-fast fibre laser systems based on SESAM technology: new horizons and applications
نویسندگان
چکیده
A promising route to manufacturing portable (sub-)picosecond fibre lasers is to use a semiconductor saturable absorber mirror (SESAM). With SESAMs, the mode-locked regime can be achieved for different values of cavity dispersion for a broad spectrum ranging from 0.8 to 1.6μm. The fibre lasers, characterized by a high efficiency and reliability and a small footprint, are very attractive for applications traditionally occupied by solid-state lasers. The broad fluorescence spectrum makes different fibre gain media attractive for tuneable and ultra-short-pulse sources. In this paper, we discuss recent advances in ultrafast fibre lasers. We study the fundamental properties and technical challenges of mode-locked fibre lasers operating in the 0.9–1.6μm range, and the methods to achieve high peak-powers from all-fibre devices. The key component is the SESAM, notably, a dilute nitride SESAM. The SESAM supplies a strong mechanism for picosecond pulse generation that is entirely self-starting for a wide range of cavity dispersion and ensures stability against Q-switched mode-locking. In particular, compact mode-locked lasers stabilized by near-resonant SESAMs can be realized in a short fibre cavity free from any dispersion compensator. An appropriate dispersion delay line at the output of the master source may be used for pulse clean-up. The high-quality pulses obtained can then be compressed using traditional methods, when the pulse first undergoes spectral enrichment via self-phase modulation in an auxiliary fibre and then gets compressed in a grating pair. The fibre laser is capable of efficient wavelength conversion via second harmonic generation in non-linear crystals. Using a periodically poled LiNbO3 crystal for frequency doubling, we produce sub-100 fs pulses at 0.8μm with a 50% conversion efficiency. New Journal of Physics 6 (2004) 177 PII: S1367-2630(04)81446-
منابع مشابه
Ultra-Fast Image Reconstruction of Tomosynthesis Mammography Using GPU
Digital Breast Tomosynthesis (DBT) is a technology that creates three dimensional (3D) images of breast tissue. Tomosynthesis mammography detects lesions that are not detectable with other imaging systems. If image reconstruction time is in the order of seconds, we can use Tomosynthesis systems to perform Tomosynthesis-guided Interventional procedures. This research has been designed to study u...
متن کاملLaser safety importance in clinical laser applications
Introduction: By introducing of laser systems and their continuous development, a new chapter of laser systems applications in a variety fields including research and clinical science in addition to the therapeutic, diagnostic applications were available for medical professionals in various fields. Most lasers emit radiation with intrinsic probable risks where in laser-tissue i...
متن کامل1.55 µm InAs/GaAs Quantum Dots and High Repetition Rate Quantum Dot SESAM Mode-locked Laser
High pulse repetition rate (≥ 10 GHz) diode-pumped solid-state lasers, modelocked using semiconductor saturable absorber mirrors (SESAMs) are emerging as an enabling technology for high data rate coherent communication systems owing to their low noise and pulse-to-pulse optical phase-coherence. Quantum dot (QD) based SESAMs offer potential advantages to such laser systems in terms of reduced sa...
متن کاملUnified Pulsed Laser Range Finder and Velocimeter using Ultra-Fast Time-To-Digital Converter
In this paper, we present a high accuracy laser range finder and velocimeter using ultra-fast time-to-digital converter (TDC). The system operation is based on the measuring the round-trip time of a narrow laser pulse. A low-dark current high-speed PIN photodiode is used to detect the triggered laser beam and to produce start signal. The pulsed laser diode generates 45W optical power at 30ns du...
متن کاملA New Compact Ultra-wideband Linear Antenna Array for Target Detection Applications
This paper presents a low-cost compact planar microstrip-fed monopole antenna and its four-element array design for ultra-wideband (UWB) wireless communication and target detection applications, respectively, operating in the frequency span of 3 GHz to 11 GHz. A prototype was fabricated and then measured based on optimal parameters. The results of reflection coefficient (S11) and radiation patt...
متن کامل